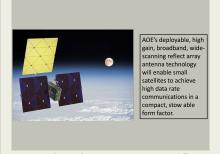
Small Business Innovation Research/Small Business Tech Transfer

A Novel High Gain Active Reflect Array Antenna Architecture for Small Spacecraft, Phase I




Completed Technology Project (2017 - 2017)

Project Introduction

The objective of this Phase I SBIR effort is to develop and demonstrate an advanced, deployable, high gain, active reflect array antenna for use in high data rate transmission to, from and among small spacecraft. While the antenna architecture proposed by AOE can be targeted for frequencies from below L-band to Ka-band and higher, AOE has selected X-band for a demonstration array for this proposed effort. Under the Phase I effort, AOE and LoadPath will focus on achieving an efficient deployable reflect array configuration and, within the trade space of reflect array architectures, will explore several approaches and perform the trade analyses in terms of performance, cost, size, weight and power. The results of this investigation will yield a high gain antenna architecture that will support future NASA and commercial small satellite communication operations. During the Phase I effort, the array deployment mechanism will be demonstrated with hardware while a complete beam-scanning reflect array antenna will be demonstrated with hardware during the Phase II effort.

Primary U.S. Work Locations and Key Partners

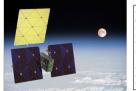
A Novel High Gain Active Reflect Array Antenna Architecture for Small Spacecraft, Phase I Briefing Chart Image

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	
Images	:
Organizational Responsibility	
Project Management	:
Technology Maturity (TRL)	:
Technology Areas	
Target Destinations	:

Small Business Innovation Research/Small Business Tech Transfer

A Novel High Gain Active Reflect Array Antenna Architecture for Small Spacecraft, Phase I



Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
Alpha Omega Electromagnetics, LLC	Lead Organization	Industry	
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Maryland	Ohio

Images

AOE's deployable, high gain, broadband, widescanning reflect array antenna technology will enable small satellites to achieve high data rate communications in a compact, stow able form factor.

Briefing Chart Image

A Novel High Gain Active Reflect Array Antenna Architecture for Small Spacecraft, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/129760)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Alpha Omega Electromagnetics, LLC

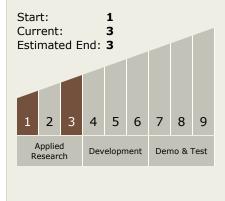
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Robert Schmier

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A Novel High Gain Active Reflect Array Antenna Architecture for Small Spacecraft, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

